(10 points) Ron and Harry are both running counterclockwise on a circular track with radius 10 feet. Ron starts at the southernmost point and Harry is the easternmost point. Ron is running at 2 feet/sec and Harry completes one lap in 30 seconds.

Harry

Ron

(a) Give Harry's x and y coordinates after 3 seconds.

$$\omega = \frac{1 \text{ rev}}{30 \text{ sec}} = \frac{2\pi \text{ rad}}{30 \text{ sec}} = \frac{\pi}{15} \text{ rad/sec}$$

$$\Theta_0 = 0 \text{ rad}$$

$$\theta = \omega t + \theta_0 = \frac{\pi}{15} \frac{rad}{sz} 3sec + 0 rad$$

$$\theta = \frac{\pi}{5} rad \qquad r = 10ft$$

$$X = r\cos(\theta) = 10\cos(75) \approx 8.090169944$$

 $y = r\sin(\theta) = 10\sin(75) \approx 5.877852523$

$$(x,y) \approx (8.09, 5.88)$$

(b) Give Ron's x and y coordinates after 50 seconds.

$$V = 2 \text{ ft/sec}$$
 $\Gamma = 10 \text{ ft} \Rightarrow \omega = \frac{1}{r} = \frac{2}{10} \frac{\text{rod}}{\text{sec}} = \frac{1}{5} \frac{\text{rod}}{\text{sec}}$
 $\Theta_0 = -\frac{\pi}{2} \text{ rad}$

$$X = r\cos(\theta) = 10\cos(10-\frac{\pi}{2}) \approx -5.440211109$$

 $y = r\sin(\theta) = 10\sin(10-\frac{\pi}{2}) \approx 8.390715291$

5. (10 points) Harry is standing on the far southern outer edge of a merry-go-round of radius 10 feet. The merry-go-round is rotating counterclockwise with an angular speed of 15 revolutions per minute. Below we give a figure of this situation and we impose a coordinate system with the origin at the center of the merry-go-round.

Give the (x, y) coordinates of Harry after 2 seconds.

$$X = r \cos(\theta)$$

$$Y = r \sin(\theta)$$

$$V = r \cos(\theta)$$

$$V =$$

- 5. Tori and Harry are both running **counter-clockwise** around a circular track of radius 10 meters. Tori begins at the northernmost point and Harry begins at the easternmost point. Harry runs faster.
 - (a) [4 points] Tori first reaches the southernmost point after 8 seconds.

What is Tori's speed, in meters per second?

$$W = \frac{\pi}{8} \cdot 10 = \frac{5\pi}{4} \approx 3.93 \text{ m/s}$$

$$V = Wr = \frac{\pi}{8} \cdot 10 = \frac{5\pi}{4} \approx 3.93 \text{ m/s}$$

(b) [6 points] Harry begins running at the same time as Tori, and catches up to her in 11 seconds.

What is Harry's speed, in meters per second? Tori has a head start of $\frac{\pi}{2}$ rad, so Harry runs $\frac{\pi}{2}$ rad more than her in 11 seconds. Tori runs $(\frac{\pi}{8})$ ||) radians, so Harry runs $(\frac{\pi}{8})$ || $+\frac{\pi}{2} = \frac{15\pi}{8}$ radians

in || seconds. His w is
$$\frac{|5\pi}{8} = \frac{15\pi}{88}$$
 rad/sec, and so:

$$V = W\Gamma = \frac{|5\pi}{88} \cdot |0 \approx \boxed{5.355} \frac{\text{m}}{5}$$

(c) [5 points] Impose a coordinate system with units in meters and the origin at the center of the circle. After 80 seconds, what are Harry's coordinates?

 $x = r < os(\Theta_0 + \omega t) + x_0$ $y = r sin(\Theta_0 + \omega t) + y_0$

$$r = |0| \qquad t = 80$$

$$\Leftrightarrow = 0 \qquad \times = 0$$

$$\Leftrightarrow = 0 \qquad \times$$

- 4. (10 points) Harry and Ron are both at the easternmost point of a circular track. The track has radius 60 feet. Ron runs in the counterclockwise direction at an angular speed of 0.02 radians per second. Harry runs in the clockwise direction.
 - (a) Impose a coordinate system with the middle of the track as the origin. Find the x and y coordinates of Ron after 30 seconds.

$$X = r\cos(\omega \pm + \theta_0)$$

$$y = r\sin(\omega \pm + \theta_0)$$

$$X = 60\cos(0.02(30) + 0) \approx 49.52$$

$$y = 60\sin(0.02(30) + 0) \approx 33.88$$

(b) How fast (in feet per second) must Harry run in order to be at the same location as Ron after 30 seconds? (Hint: You may want to consider the angle that Harry will travel.)

$$\Theta=\omega t$$
 Ron travels $\Theta=0.02\times30=0.6$ radians $3+3$ Harry travels $2\pi-0.6\approx5.68318531$ radians $3+3$ (in the negative direction)

For $30=\frac{5.68318531}{30}$ radians $30=\frac{5.68318531}{30}$

$$V = \omega r = 0.189439510239 \times 60$$

= 11.3663706144 feet/sec } +1